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Abstract 

The smearing of the deformation density in the 
diatomics H2, CH, Bell, CO and N2, caused by 
internal vibration, is calculated using a large number of 
LCAO Hartree-Fock-Slater electronic wave- 
functions. Both the effect of anharmonicity and the 
thermal population of rotational and vibrational states 
at 300 K are considered. The main conclusion is that 
the effect of the smearing is very small for these 
molecules. Compared to the effect of the anharmonic 
zero-point vibration upon the charge deformation 
density, the influence of including higher states at 
300 K is negligible. 

Introduction 

Comparison of experimental charge density dis- 
tribution with theoretical densities in molecules is a 
complicated subject, partly due to the difference caused 
by nuclear motions included in the former, and the 
usual static approach (Born-Oppenheimer approxi- 
mation) of the latter (Feil, 1977; Hirshfeld, 1977). A 
reliable comparison demands a deconvolution of 
experimental densities (Fink, Gregory & Moore, 1976; 
Hirshfeld, 1976) or a convolution of the theoretically 
calculated densities. Stevens, Rys & Coppens (1977) 
argue the latter approach to be more desirable, which 
will be discussed in the present study too. 

The complexity of the nuclear motions in a molecule 
or molecular crystal requires a number of approxi- 
mations in a theoretical treatment. These motions are 
often supposed to be separable into non-coupling 
internal motions and external or rigid-body motions. 
The latter have in most systems much larger ampli- 
tudes. With this distinction, the smearing of the electron 
density due to external modes can be studied using a 
convolution of the internal charge density distribution 
onto a probability function describing the rigid-body 
motions (Hirshfeld, 1977; Coppens & Stevens, 1977; 
Stevens et al., 1977; Coulson & Thomas, 1971; 
Thomas, 1973). It is this internal charge density, or 
more precisely the deformation density, which we will 
consider in detail. 
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The usual starting point for calculation of the charge 
density is the spin-restricted electronic wavefunction. 
This function, and hence the charge density, is in the 
Born-Oppenheimer approximation parametrically 
dependent on the nuclear coordinates R (Smith & 
Absar, 1977; Stewart, 1977). The time-averaged 
internal density Pint(r) is then found from the canonical 
ensemble average over the states n for the nuclear 
wavefunction %,(R) (Stewart, 1977; Epstein & Stewart, 
1979): 

Pint(r) = ~ Wnf 9'*(R) p(r; R) 9'n(R) dR, 
n 

for short, 

Pint(r)= ~ W~ I~(r), (1) 
n 

where W~ are temperature-dependent normalized 
Boltzman factors. Evaluation of (1) demands in 
principle an infinite number of electronic wave- 
functions with different values of R. This will give rise 
to further approximations. 

Previous studies concerning approximate solutions 
of (1) are ultimately restricted to the harmonic or 
anharmonic zero-point vibration. For example, we 
mention the attack on this problem by Coulson & 
Thomas (1971), who used a convolution of only the 
molecular charge density at equilibrium distance onto 
the square of the vibrational wavefunction. Ruysink & 
Vos (1974) extended this approach with averaged 
normalization factors of the molecular orbitals. Becker 
(1977) showed results obtained with a numerical 
integration technique, using many electronic wave- 
functions. Stewart (1977) and Epstein & Stewart 
(1979) studied the vibrational average of X-ray 
scattering intensities and diatomic molecular form 
factors, using a rigid pseudo-atom approximation. The 
effect of non-rigid terms in a pseudo-atom approxi- 
mation was also studied by Epstein & Stewart (1979). 

The rigid pseudo-atom model reduces the com- 
putational effort enormously, but it may easily give 
unreliable results, especially where charge difference 
density maps are involved. This can be caused by 
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relatively small errors in the total density described by 
the model, which can become relatively large errors in a 
deformation density map, where the sum of spherical 
atomic densities is subtracted from the molecular 
density. Besides that, it is quite difficult to detect which 
part of the deformation density belongs to one of the 
pseudo-atoms. 

In order to obtain a feasible picture of the effect of 
internal vibration on a deformation density, we choose 
to evaluate (1) in a more rigorous computational 
scheme for diatomic molecules. Here we can use 
high-quality nuclear wavefunctions and electronic 
wavefunctions at many different geometries within a 
reasonable amount of computer time. 

The method 

In the case of a diatomic molecule we adopt the 
spin-free vibrating rotator model (Pauling & Wilson, 
1935). It should be realized that this model concerns a 
gas-phase molecule, where temperature effects will 
depend on the thermal occupation of the vibration- 
rotation energy levels of a free rotating specimen. 
Leaving the translations out of consideration, the 
nuclear motions will be described by the three- 
dimensional set of polar coordinates R'. 

The electron coordinates r are defined relative to R', 
with the (internal) z axis coinciding with the inter- 
nuclear axis R'. In this coordinate system p(r; R') is 
independent of the solid angle O'. Now 

In(r) = f q/*(R') p(r;R') gtn(R' ) dR'. (2) 

Next we introduce the substitution (Pauling & Wilson, 
1935; Schutte, 1976): 

1 
q/n(R') = ~vs(R') Ys'('O') ~7' (3) 

where Yjm(.O') is a spherical harmonic function and v,J 
are the vibrational and rotational quantum numbers 
respectively. Integrating over O' yields 

1 1 
--R '2 dR'. (4) Ivj(r) = f ~vs(R')-R 7 P(r;R')v/vs(a') a' 

Using a proper expansion of the vibrational wave- 
function q%(R') in the displacement coordinate R = 
R '  -- R e, 

oo 

I , s ( r )=  f p(r;R)Q,s(Rv~)exp(-aR2)dR, (5) 
--OO 

where Qvj(Rv/~) is the polynomial part of this 
expansion, which will be discussed in the next section. 
With x = R V/~, 

_ _  1 Y  ( r - ~ )  Ivs(r)=-- ~ p ; Qvj(X)exp(-x2)dx. (6) 

Now (6) has a suitable form to be evaluated using an 
accurate numerical integration technique based on a 
Hermite polynomial (Abramowitz & Stegun, 1964). 
The integral will be approximated to (with neglect of a 
small rest term) 

1 ( x )  
Ivs(r) ~ - ' ~  Z p ; Qw(xt) Wi' (7) 

where the x{s are the zeros of the nth order Hermite 
polynomial on which the integration is based. The 
weight factors W~ are calculated according to (Ab- 
ramowitz & Stegun, 1964) 

2 "-1 n! 
W, = . (8) 

n2[H._l(x3] 2 

Finally, the separate nuclear displacements are found 
from the relations: 

R1 = m fl R; R 2 = - r a g  R. (9) 
ml m2 

The vibronic wavefunetion 

As indicated before, we describe the internal motion of 
a diatomic molecule by the vibrating rotator model 
(Pauling & Wilson, 1935; Schutte, 1976). With the 
substitution of (3) and working out the angular- 
dependent part, the vibrational wave equation becomes 

[_ 1 d 2 J ( J + l )  ] 
+ V(R)  + ~,v~(a) 

2# dR 2 2g(R + R--e) 2 

=%s ~%(R). (I0) 

Here R is the displacement coordinate (that is, R = 0 
denotes the equilibrium distance Re), g is the reduced 
mass of the system and V(R) the potential function 
which will be obtained from the SCF calculations. 
V(R) can be expanded in a Taylor series in powers of 
R, where the first-order term vanishes since V(R) has a 
minimum at R = 0. Then a harmonic oscillator 
approximation is achieved when all terms above second 
order are neglected and J is put to zero. In this case the 
vibrational equation becomes 

2g dR 2 +½kR ~ov(R)=ev~ov(R ), (11) 

where the force constant 

d V(R) ] 
k ~  

dR2 R =0 
(12) 
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Exact solutions of (11) are the orthonormal harmonic 
oscillator eigenfunctions 

( O v ( R ) = N v H v ( R v / a ) e x p ( - a R 2 / 2 ) ,  (13) 

where v is the vibrational quantum number, a = V/-~, 
Hv is the vth-order Hermite polynomial and N~ is the 
normalization constant. The harmonic oscillator eigen- 
functions form an appropriate basis for an approxi- 
mate solution of (10) for low values of v. Thus we 
expand ~,~s(R) in a linear combination of harmonic 
oscillator functions: 

~v,(R) = ~ avs;icPi(R). (14) 
i=0 

The coefficients avs;t in (14) are calculated using the 
variation method by solving the set of equations 

~. avJ:t ( n j : l j -  ~'vJ (~ij) = 0 ,  ( 1 5 )  
i=0 

j ,  v = O, m, 

for values of J corresponding to significantly occupied 
rotational energy levels. In connection with evaluation 
of matrix elements H~..tj we divide the Hamiltonian in 
(10) into a harmonic part and two perturbation terms: 

1 d(~x2 2 ) ( ~ )  g s =  ~ w  - -x  + V '  

J ( J  + 1) 
+ 2#(x/v/-a + Re) 2' (16) 

where again x = R v/-a, 

o9 = v/k/#  (the harmonic vibration frequency), 

and 

v,(xlv/-d)= V(xlvfd)-½k(xlv/-d) 2. (17) 

Integrals from the first term only give harmonic 
oscillator energies at the diagonal elements of the H s 
matrix, while integrals involving the perturbation term 
give non-zero contributions for each element of this 
matrix. Again we have used the Hermite integration 
technique [cfi (6) and (7)]. This simple method requires 
only the use of the explicitly calculated potential values 
V(xlv/-a)  in the integration points referred to in (7). 
These integrals are thus approximated according to: 

t Z '  + 21u(x/v/- d + Re)2 

N t Nj ~. V' + 
k=l  

x H, (xk)Hl (xk)  W k. (18) 

The number of harmonic oscillator basis functions in 
~,.s(R) was chosen at least one less than the order of 

the Hermite polynomial on which both (7) and (18) are 
based. In a test calculation we applied this integration 
method to the evaluation of (10) for a model system 
with a Morse potential and J equal to zero (Johnson, 
1977). For the lowest energy levels we obtained an 
accuracy of at least twelve figures with respect to the 
exact solution. With the real function ~,~j(R) we infer 
from (13) and (14) that 

Qvs(x)= _ av .mNiHt(x)  (19) 
i=0 

The eigenvalues tvj obtained from the solutions of (15) 
(expressed in the correct dimension) determine the 
Boltzman weight factors in (1): 

W,, = Wvs = (2J + 1) exp ( - t ~ / k T )  

x (2, /+ 1) exp (--EJkr) (20) 

The vibrational mean-square amplitude can be obtained 
for a state v,J by analytical integration: 

(R2)vj = (~,, j(R)R 2 iis~s(R) ). (21) 

In the harmonic approximation the mean-square 
amplitude of the zero-point vibration is given by 

1 
(R2)harm = ((n0(R) R 2 ~0(R)) = - - .  (22) 

2a 

At temperature T, 

vJ 
(23) 

where again Wvs are the Boltzman factors from (20). 

Results 

Using Ap = Pmol - ~ Patoms instead of p in the method 
described above, we performed calculations of the 
vibrationally averaged deformation density of the 
diatomics H 2, Bell, CH, CO and N 2. In each 
calculation we made use of LCAO Hart ree-Fock-  
Slater SCF wavefunctions (Baerends & Ros, 1978) in 
triple-~ atomic basis sets, extended with a polarization 
function at each center. For the atomic densities the 
same method was applied, using an average (spin 
restricted) configuration. 

For the CO and N 2 systems the numerical inte- 
gration was based on the 21st-order Hermite poly- 
nomial, so electronic wavefunctions at 21 internal 
distances were used. The rather low value of a for the 
other systems increases the span of the integration 
points. A high-order H,, leads to large displacements of 
the nuclei from their equilibrium positions, where the 
SCF calculations could be less reliable. In order to 
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obtain a considerable number of integration points in a 
range of internuclear distances comparable to the CO 
case, we choose for these systems the 51st-order 
polynomial, but only used the 23 inner points. These 
points have weight factors above 10 -5 and they 
describe the potential function V(R)  up to values of R 
with positive bond energy in the short distance region. 
The error due to this truncation in the sum of the 
weight factors (which equals V/-~) is also about 10 -5, so 
the resulting error in the averaged density due to this 
neglect will be very small: the neglect occurs in the final 
stage of the calculation [cf. (7)]'and limits the accuracy 
of the averaged density to about four figures. 

Another consequence of this approximation is that 
the potential V(R)  in the truncated points will not be 
known too. Since these values are needed for the 
calculation of the integrals (18) (and cannot be 
neglected at this stage in the calculation of the vibronic 
wavefunction), we estimated them by extrapolation 
from different exponential series fits of the inner and 
outer parts of the potential function V(R).  At larger 
displacements errors in these estimates will become 
larger, but also less important because the weight 
factors in (18) decrease rather fast to extremely low 
values. 

For each system we started with the calculation of 
the force constant and equilibrium distance between the 
nuclei. These values, as given in Table 1, determine the 
final point distribution. A few spectroscopic constants 
were obtained from a least-squares fit of the vibration- 
rotation energy levels in the product expansion of the 
v,J quantum numbers (Herzberg, 1950; Richards, 
Raftery & Hinkley, 1974): 

ev s = ~. cij( v + ½)i [ j ( j  + 1)]:. (24) 
i j  

The constants co e, co e x e, B e and ~te according to the 
definitions of Herzberg (1950) are also given in Table 
1. Table 2 shows the corresponding experimental 
values. The calculated values show a good agreement 
with the experimental ones. This strongly justifies the 
methodological approach of the evaluation of the 
vibrational wave equation, and proves the quality of 
V(R).  The theoretical root-mean-square amplitudes are 

Table 1. Calculated equilibrium distances and r.m.s. 
amplitudes as a fraction o f  R e 

I00  x r . m . s . / R  e 

H a r m o n i c  Anharmonic  
R e (a.u.)* v = 0 v = 0, J = 0 T = 300 K 

H 2 1.456 11.70 12.37 12.46 
C H  2.172 7.27 7.55 7.61 
Bel l  2.525 7.18 7 .50 7.57 
C O  2.132 2.98 3.02 3.02 
N 2 2.047 2.93 2 .96 2.97 

* I a.u. = 0 .5292 A. 

given in Table 3, as fractions of the equilibrium 
distances. 

At a temperature of 300 K the contributions of the 
vibrational ground state and the first excited state are 
included, each with 15 (for H 2, CH and Bell) or 35 
(for CO and N2) rotational states. The influence upon 
the r.m.s, amplitudes of this temperature compared to 
the anharmonic zero-point vibration is quite small. The 
r.m.s, amplitudes of CO and N 2 are slightly larger than 
the corresponding values given by Epstein & Stewart 
(1979). 

In Fig. 1 are plotted five deformation densities of 
CH, calculated at different internuclear distances, 
contributing to an averaged density calculation based 
on the fifth-order Hermite polynomial. To obtain this 
smeared density, each plot should be scaled with the 
weight factor which belongs to that displacement, these 
results should then be summed and finally the sum 

Table 2. Calculated spectroscopic constants (in c m  -1 )  

09 e (o  e x e B e  ct e 

H2 4120 112 56"3 2"67 
C H  2616 49 13.8 0 .49 
BeH 2030 43 10.5 0 .39  
C O  2174 13 1.93 0 .017 
N 2 2390 14 2.05 0 .018 

Table 3. Experimental  spectroscopic constants (in cm-1) 

[See Herzberg (1950), Mills (1974), Baerends & Ros (1978).] 

(De (De Xe Be ~ e 

H 2 4403 121-6 60.9  2.99 
C H  2859 63.3 14.4 0.53 
Bel l  2059 35.5 10.3 0 .30  
C O  2170 13-3 1.93 0 .0175 
N 2 2358 14.2 2 .00  0 .0187 

," i 
• " i 

~t " i 

~5 

-JI.62 '-i~17 '-0?72 ' 7 . . . . . . . .  3:78 

Fig. I. Deformation densities in CH: static, equilib- 
rium distance; static at four displacements (el. 
Table 4); dynamic. 
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normalized. [These weightfactors including the poly- 
nomial contributions Q(R Vcd) from the harmonic and 
anharmonic vibrational wave functions are given in 
Table 4.] 

The averaged density plotted in Fig. 1 is the accurate 
one, consisting of 23 anharmonic (with v = 0, J = 0) 
weighted contributions. This figure shows that the 
vibrationally averaged deformation density lies close to 
the static one at equilibrium distance, which could be 
regarded as a consequence of decreasing weight factors 
at increasing displacements. If harmonic weight factors 
were used, the resulting smeared deformation density in 
the bond region would be found at about the same 
distance above the static density as the anharmonic- 
weighted one was found below it. 

In Figs. 2, 3 and 4 are plotted in the y-z halfplane, 
respectively the static and dynamic deformation den- 
sites of Bell and the difference between them (the 
latter with lower contour values). From these figures it 
is obvious that the averaging of the deformation density 
due to the internal vibration is very small, even in 
systems with a low value of a. The resemblance 
between our results and those of Becker (1977, Fig. 
25a) for the Bell molecule is small, which is mainly 

Table 4. Displacements and weight factors for CH as 
obtained from calculations based on the fifth-order 

Hermite polynomial 

because Fig. 4 represents the difference between 
deformation densities, while Becker shows the cor- 
responding difference between total densities. 

Both the static and smeared deformation densities of 
CO along the internuclear axis are plotted in Fig. 5. 
Except at sharp peaks in the deformation density, the 
effect of vibrational smearing turns out to be negligible. 
For the N 2 system our calculation led to the same result 
as for the CO system. 

Like Coulson & Thomas (1971) we calculated the 
apparent bond lengths of the hydrogen molecule. For 
various vibronic wavefunctions the bond shortening 
referred to R e was 6.05% [harmonic approximation, 
compare with 5.71% of Coulson & Thomas (1971)], 
3.02% (anharmonic zero-point vibration) and 1.92% 
( T =  300 K). 

Discussion and conclusions 

(1) From the results presented above it will be clear that 
in each system we investigated, the vibrationally 
averaged deformation density cannot be regarded as 
considerably different from the static one at equilibrium 
distance [cf. Thomas (1973) for calculations with H~ 1. 
At 300 K the temperature influence upon this smearing 
of the deformation density is negligible compared to the 
results< obtained with the anharmonic zero-point vi- 
bration. Since the main effect is described by pure 

Weight factors 

Displace- Harmonic Anharmonic 
ment(a.u.) v = 0 v = 0 ,J= 0 T= 300 K 

0.4555 0.01995 0.05065 0.05371 
0.2161 0.3936 0.5016 0.5144 
0.0000 0.9453 0.9273 0.9221 

-0.2161 0.3936 0.2869 0.2766 
--0.4555 0 . 0 1 9 9 5  0 . 0 0 6 0 0 7  0.005582 

' , , 0  ,'60 

Fig. 2. Static deformation density in Bell. Contours at 0.0, 0.03, 
0.06, 0.09, 0.12, 0.15 e (a.u.) -3 (negative contours dotted lines). 

' 

• 0 00 0 i60 / 1120 I 1180 I 2 140 " ' ""  3 L0 i I 0 I 4 I20 i 4-i80 

Fig. 3. Dynamic deformation density in Bell. Same contours as in 
Fig. 2. 

it . . . .  

" , ,  i / ......... , t ' ....... 11:71 ~ 

¢b0100 ~ 0 t60 ' 1 ~20 ~ 1 ~80 t 2 ~ 0  ~ 3 ~00 ~ 3 '60 ~ 4q20 J 4 ~80 

Fig. 4. Difference between static (Fig. 2) and dynamic (Fig. 3) 
deformation density in Bell. Contours at 0.0, 0.001, 0.002, 
0.004, 0.008, 0.02 e (a.u.) -3. 

6 

t~ 

i • 
- 1 . 5 0 - 1 . 0 8 - 0 . 6 7 - 0 - 2 5  0 .17  0 .58  bOO 1.4.2 1.83 2.25 2-67 3-08 3-50  

Fig. 5. Deformation density in CO: s t a t i c ' , -  
dynamic. 
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vibration, the rotation can be deleted from the initial 
model. This simplifies an extrapolation to the influence 
of an isolated internal vibration in a molecular crystal. 

(2) Within the Born-Oppenheimer approximation 
(which includes the separation of the electronic and 
vibronic Schr6dinger equations) the method used in 
these calculations will be correct. It will be possible to 
increase the accuracy by taking more integration points 
(using a higher-order H,,), but even then we do not 
expect other results, since test calculations with fewer 
points showed the same effect of this smearing as the 
results presented here. 

(3) We do not expect other results than those found 
here, if more accurate electronic wavefunctions are 
used. The vibrational smearing within this model is a 
consequence of changes in the static deformation 
density at different displacements of the nuclei, and not 
of the deformation density itself. We note that it has 
been shown (Baerends & Ros, 1978; Heijser, van 
Kessel & Baerends, 1976; de With & Feil, 1975) that 
the deformation density calculated with HFS-SCF 
wavefunctions at equilibrium distance is quite reason- 
able. If differences with higher quality wavefunctions at 
larger displacements should become larger, this does 
not play an important role due to the decreasing weight 
factors. 

(4) With both harmonic and anharmonic vibrational 
wavefunctions used for the calculation of the averaged 
deformation density, the absolute values of the dif- 

fe rence  with the static density were of the same size, 
but the sign of the difference between the static and 
harmonic averaged density may be opposite to the sign 
of the difference between the static and anharmonic 
averaged density. The plotted results presented above 
are calculated with the anharmonic zero-point vibra- 
tional wave function. 

(5) The effect of including temperature was small for 
both the r.m.s, amplitudes and the averaged defor- 
mation densities in the bond region. The apparent bond 
length of hydrogen shows a more significant tem- 
perature dependence. Thus, for this smearing the 
anharmonic zero-point vibration is a very good 
approximation for these molecules. This is also seen 
from the weight factors in Table 4, the introduced 
asymmetry between inner and outer contributions is 
only slightly affected by including temperature. 

(6) The deconvolution of experimentally obtained 
deformation densities of systems similar to those 
mentioned here (in order to obtain a better comparison 
with a static theoretical density) is not necessary. For 
example, in the N 2 case [cf. Fink et al. (1976) for an 
experimental result with deconvolution] we calculated 
the averaged deformation density in the center of the 
bond to be about 0 .5% lower than the static density. 
This difference is much smaller than the accuracy of 
any density calculated with an SCF method (Baerends 
& Ros, 1978; Smith, 1980). 

In future investigations we will pay attention to the 
application of this method to the bending mode 

'vibration of triatomics (e.g. the water molecule), and on 
the other hand to the application of the numerical 
integration technique to rigid-body motions of larger 
molecules. The latter case has the disadvantage of 
needing experimentally determined mean-square dis- 
placements, since it will be practically impossible to 
calculate a force field for the external motions. 

This investigation was supported in part by the 
Netherlands Organization for Chemical Research 
(SON) with financial aid from the Netherlands 
Organization for the Advancement of Pure Research 
(ZWO). 
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